8-800-550-70-47 mail@mashproject.ru
Заказать звонок
Ru En

Обзор методов измерения твердости металлов и сплавов

Обзор методов измерения твердости металлов и сплавов

Исторически с развитием технологий обработки металлов появлялись и совершенствовались способы контроля качества металлических изделий.
Известно множество способов определения твердости металлов и сплавов:

  • Вдавливание индентора под действием статической нагрузки (нагрузка прикладывается плавно) - по методу Бринелля, Роквелла, Супер-Роквелла, Виккерса, М.С.Дрозда, Герца, Лудвика, монотрон Шора;
  • Динамическое вдавливание индентора (нагрузка прикладывается ударом) - по методу Мартеля, Польди, вертикальный копер Николаева, пружинный прибор Шоппера и Баумана, маятниковый копер Вальцеля, маятник Герберта, маятниковый склерометр Кузнецова;
  • Измерение микротвердости статическим вдавливанием - по методу Липса, Егорова, Хрущева, Скворцова, Алехина, Терновского, Шоршорова, Берковича, Кнупа, Петерса, Эмерсона, микротвердомер Цейсса-Ганеманна;
  • Метод упругого отскока бойка - склероскоп Шора;
  • Измерение твердости царапанием - по Моосу, напильник Барба, прибор Мартенса, Хенкинса, микрохарактеризатор Бирбаума, склерометр О’Нейля, Григорович, Беркович).

В целом, по характеру воздействия индентора на поверхность исследуемого объекта можно узнать конкретные свойства материала: вдавливание определяет способность к сопротивлению пластической деформации, отскок показывает упругие свойства, царапанье характеризует сопротивление разрушению.

Многие приемы сейчас используются редко или вовсе ушли в прошлое.
На данный момент основные и самые распространенные методы контроля твердости металлов условно делят на две группы: прямые и косвенные.

Прямые методы измерения твердости
основаны на способности материала сопротивляться внедрению другого, более твердого тела - индентора. Инденторы изготавливаются в форме конуса или пирамиды из алмаза, в форме шарика - из закаленной стали или карбида вольфрама.

Прямые методы реализуют в основном стационарные твердомеры по шкалам Бринелля (HB), Роквелла (HRA, HRB, HRC), Супер-Роквелла (HRN и HRT), Виккерса (HV).

Сущность испытаний заключается в том, что после внедрения индентора, при приложении заданной статической нагрузки, происходит пластическая деформация исследуемого материала. На поверхности образца остается отпечаток.

Вычисление значения твердости строится на зависимости приложенного усилия и определенных геометрических параметров отпечатка. Для каждого прямого метода предусмотрена своя зависимость (см. таблицу ниже). Например, при замерах по Роквеллу фиксируется глубина отпечатка: чем она меньше, тем выше твердость объекта.

Плюсы: стационарные твердомеры применяются для контроля любых металлов и сплавов; выдают результат с минимальной погрешностью; не требуют дополнительной калибровки.

Минусы: работают на одном месте, как правило в специально оборудованной лаборатории; необходимо заранее готовить образцы, либо изделие должно иметь конкретные габариты; необходима квалификация оператора; невысокая скорость выполнения исследований.

Косвенные методы измерения твердости
подразделяются на ультразвуковой и динамический - они не напрямую измеряют твердость, а только оценивают значение твердости металла в зависимости от других физических свойств.

Косвенные методы реализуют портативные твердомеры - ультразвуковые и динамические. Результат можно получить как в самых распространенных единицах твердости, таких как Роквелл С (HRC), Бринелль (НВ), Виккерс (HV), так и в реже используемых единицах Роквелла А и В (HRA, HRB), Шора D (HSD) и других.

Ультразвуковой метод (ультразвуковой контактный импеданс) основан на фиксации степени затухания резонансной частоты колебаний металлического стержня с алмазным наконечником (индентором) при внедрении его в поверхность металлического изделия.  

При глубоком внедрении индентора в мягкий металл будет большая площадь контакта алмаза с материалом, значит будет выше степень затухания частоты колебаний.

Применим к изделиям практически любых габаритов по массе и размерам; оставляет незаметный отпечаток; подходит для измерения твердости поверхностно упрочненных слоев; удобен для образцов со сложной конфигурацией (шестерни, подшипники, метизы). Применение на изделиях с крупнозернистой структурой ограничено (чугуны, бронза).

Динамический метод (Либа) основан на определении отношения скорости бойка при отскоке от поверхности измеряемого образца к скорости бойка при соударении с поверхностью образца. В качестве бойка используется твердосплавный шарик (карбид вольфрама WC-Co).

Чем ниже твердость металла, тем больше энергии удара уходит на формирование отпечатка и тем меньше скорость отскока бойка.

Подходит для массивных изделий; образцов с высокошероховатой поверхностью; объектов со значительной толщиной упрочненного или закаленного слоя.

Плюсы: портативные твердомеры автономны, просты в управлении, работают в труднодоступных зонах, обладают высокой скоростью проведения замеров.

Минусы: погрешность результатов измерений выше, чем у стационарных приборов; иногда требуется дополнительная калибровка шкал.

Общие требования к испытаниям

  • Вне зависимости от величины прилагаемого усилия или затрачиваемой энергии, значение твердости для однородного тела при постоянной температуре должно быть материальной константой.
  • Поверхность объекта должна быть подготовлена в соответствии с методикой измерения.
  • Образец должен быть надежно зафиксирован, чтобы исключить смещение относительно оси приложения нагрузки со стороны прибора.
  • Твердость должна иметь совершенно определенный и ясный физический смысл, правильную размерность, характеризующую сопротивление материала пластической деформации.

Чем выше твердость образца, тем более высокая нагрузка нужна при его исследовании. Чем точнее метод, тем выше требования к подготовке поверхности контролируемого экземпляра. Вообще, чем тщательнее будет подготовлен образец для испытаний, тем меньше будет погрешность результата при использовании и стационарного, и портативного твердомера.

Классические прямые методы измерения твердости путем внедрения индентора под действием статической нагрузки

Метод

Принцип вычисления твердости Шероховатость
поверхности
образца, Ra

Индентор

Нагрузка

Шкала

Применение
Бринелля По диаметру отпечатка -- как приложенная  нагрузка, деленная на площадь поверхности отпечатка
(кгс/мм²)
1,25 - 2,5 Твердосплавный шарик диаметром
1; 2; 2,5; 5 и 10 мм
1 кгс (9,8Н) -
3000 кгс (29420Н)
HB Закаленные и незакаленные стали, мягкие металлы и сплавы (свинец, олово), титан, медь, алюминий, чугун, высокопрочные сплавы (на основе никеля, кобальта и др.), подшипниковые сплавы
Роквелла По глубине вдавливания -- как относительная разница в глубине вдавливания индентора при приложении основной и предварительной (10 кгс) нагрузки 0,38 - 2,5 Алмазный конус с углом при вершине 120° 60 кгс (588Н) HRA Коррозионностойкие и жаропрочные стали
Твердосплавный шарик диаметром 1/16 дюйма
(1,588 мм)
100 кгс (980Н) HRB Сплавы меди, алюминиевые сплавы, бронза, ковкий чугун, низкоуглеродистые стали
Алмазный конус с углом при вершине 120° 150 кгс (1471Н) HRC Высокоуглеродистые стали после термической или химико-термической обработки
Супер-Роквелла 0,08 - 0,16 Алмазный конус с углом при вершине 120° или твердосплавный шарик диаметром 1/16 дюйма (1,588 мм) 15 кгс (147,1Н)
30 кгс (294,2Н)
45 кгс (441,3Н)
HRN, HRT Алюминиевые сплавы, детали с упрочненными поверхностными слоями, тонкие малогабаритные образцы
Виккерса Производится деление нагрузки на площадь боковой поверхности полученного отпечатка 0,02 - 0,04 Алмазный индентор в форме правильной четырехгранной пирамиды с углом 136° между противоположными гранями 1 кгс (9,8Н) -
100 кгс
(980Н)
HV Высокопрочные стали, чугун, цветные металлы и сплавы; закаленные и незакаленные стали, литье; тонкие листовые материалы; поверхности с гальваническим (цинкование, хромирование), азотированным, луженым покрытием различной толщины
Микро-Виккерса 0,01 кгс (0,098Н)
- 5 кгс (49Н)
Тонкие закаленные слои; анодированные, цементированные, азотированные детали; поверхности с тонким гальваническим покрытием; изделия из высокопрочных металлов и сплавов; тонколистовые стали